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Introduction 

 However there is no such existence of the two body problem in 
our real universe, in spite of that the study of two body problem plays a 
significant role in the study of Celestial Mechanics. The universe is a 
family of a huge numbers of bodies and everybody is related to another 
body by their mutual attraction forces, either that may be negligible or 
accountable. But if a problem can be considered such that it involves only 
a planet and its satellite, then it can be treated as a two body problem. 
Because the other effects due to the other body can be neglected in that 
case. This is how a two body problem can be established for the basic 
study of the celestial mechanics. 
 There a huge number of researches have been carried out in       
this _eld, which contains the dynamical model of the two body problem 
(Hough 1984; Seidelmann 1993; Breiter and Jackson 1998; Margheri et 
al. 2014). Few solutions also exist, either analytical, or in closed form, or 
may be numerical to the classical two-body problem. Similar problem with 
an additional forces due to the resistance of the medium surrounding by 
the attracting center has been discussed by Mittleman and Jezewski 
(1982), Mavraganis and Michalakis (1994), Brouwer and Hori (1961) etc,.  
 Mavraganis and Michalakis (1994) proposed a drag model, in 
which the resistance is proportional to the vector velocity and inversely 
proportional to the square of the mean distance, which gives a 
inhomogeneous second order linear di_erential equation. But we start 
with the atmospheric drag force as the resistance force, which is directly 
proportional to the square of the velocity of the satellite and exponentially 
with the radial distance. 
 Our concert is to develop the model for the lower earth orbit 
moving around the Earths atmosphere. However there are so many 
sources of perturbations affecting satellite orbital motion from the injection 
point until the ends of its lifetime. In general orbit perturbation can be 
divided into two different parts mainly, one is gravitational and another is 
non- gravitational. The gravitational are those due to oblates of the Earth, 
the zonal, the tesseral, and sectorial spherical harmonics and effect of the 
Suns or the Moons attraction. Again the non-gravitational perturbations 
are including atmospheric drag, solar radiation pressure and magnetic 
force, etc. Where the drag is dominating on the low Earth orbit, the solar 
radiation pressure is effective for the geosynchronous satellite and the 
magnetic force is due to the interaction of the Earth magnetic field with the 
dipole moment induced in the satellite. The gravitational potentials of the 
non-spherical earth models was initiated by Kozai (1959). Details of the 
gravitational potential theory and atmospheric drag force can be found in 
Chobotov (2002). The numerical simulation of the equation of the orbital 
motion was performed by Al-Bermani et al. (2012) and Metris and Exertier 
(1995). 
 Here our problem leads to a second order non-linear di_erential 
equation with a function of radial distance, time and velocity of the 
satellite. We have used Runge- Kutta method of numerical integration for 
numerical calculation. The atmospheric density is calculated as 
exponential functions of the satellite altitude from the Earths surface. 
 

Abstract
We investigate nature of the Lower Earth Orbit (LEO) under the 

atmospheric drag. As a result we impose decreasing nature of the 
satellite's altitude. We show that the satellite crashes into the Earth's 
orbit under a certain condition that if the satellite comes into the altitude 
of 145 km. We also investigate the velocity of the satellite moving around 
the Earth's atmosphere.  
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 The paper is organized as follows: Sect. 2 
gives the basic equation of the motion of the two body 
problem, Sect. 2.1 gives the dynamical model of the 
problem, Sect. 2.2 gives the model for the 
atmospheric drag, Sect. 3 gives the perturbation 
model and solvinng technique of the problem. In the 
Sect. 5 the graphical results are shown and in the last 
in Sect. 6 is about the conclusion part of the paper. 
 As a result we get the effect of atmospheric 
drag force decreases the lifetime of a satellite as well 
as it hampers the basic behavior of the satellite on its 
own orbit. 
Equations of Motion 

 Let us consider an inertial system having its 
origin at O, in which the Newton's Laws of motion 
holds true. Let m1 and m2 be the masses of the two 
bodies, whose position vectors relative to O are r ~1 
and r~2, respectively at a particular instant of time. 
Let ~R be the position vector of the center of mass of 
the pair. Also let ~r be the position vector of m2 
relative to m1 . Thus we have 
 

 
 where, r is the length of ~r. The equations of 
motion of the particles are given by 

 

 
 To make this analysis useful, let us fix the 
origin at m1, and subtracting the Eq. (1) from Eq. (2), 
we get 

 
 Thus the equation for the relative motion is  

 

 
Where, 

 
 If one of the masses is negligible then the 
frame is inertial, otherwise the coordinate frame of 
relative motion is accelerated. Even so the equation of 
motion Eq. (4) has the same form as in inertial 

coordinate except that the mass of the central body is 
replaced by the totalmass of the system. 
Dynamical Model of the Problem 

 Newtonian mechanics was initially developed 
in order to account for the motion of the planets in the 
solar system. The motion of a body object in the 
space is an integral part of the preliminary orbit 
determination process. The Kepler's problem subject 
in addition to a uniform force of constant magnitude 
and direction as given by Kozai (1959). Now Eq. 4 is 
written in terms of cartesian coordinate system as 
follows:  

 

 
 
 
 
 
  
where x; y; z are the coordinate axis of the cartesian 
coordinate system, and  
Atmospheric Drag  

 When an object is not so far from the Earth's 
surface, it is subject to the drag due to the 
atmosphere. Actually the orbit perturbations are the 
cause of external torques acting about the center of 
mass of the satellite. When these torques arise from 
the space environment, specially from the atmosphere 
then it is called atmospheric drag. 
 The drag force is the resistance o_ered by 
Atmosphere to the satellite. This force always acts in 
the opposite direction to the motion of the satellite. 
The e_ect of the this force on a Lower Earth Orbit 
(LEO) decreases as the radial distance of the satellite 
increases. This is the cause that the force is 
maximum at the point of injection of the satellite and 
at the time of re-entry to the Earth surface. The action 
of drag on a satellite will cause it to spiral back into 
the atmosphere. Again as we are dealing with the 
LEO satellites, so we have to take into account the 
e_ect of the atmospheric angular motion, which we 
can take similar to the Earth's angular motion. 
Now the acceleration experienced by the satellite due 
to atmospheric drag is computed using the following 
expression given by Kirk et al. (2013): 

 
 
 
 
Vr = Satellite velocity vector relative the   
                             atmosphere. 
p = atmospheric density. 
Cd = drag coefficient of the satellite. 
A = reference area of the satellite. 
m = mass of the satellite. 
 The drag coefficient is generally depends on 
the geometry of the body and is determined by 
experiments. The reduction in period due to 
atmospheric drag is given by (John, 1999). 

 
 
 
Atmospheric Density 

 The atmosphere of the Earth is surrounded 
by air and dust in a accountable sequence. The 
density of air at the Earth's surface is not equal to the 
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density at a higher position from the Earth. We know 
that the behavior of the curve for density model is an 
exponential curve. It is seen that the density 
decreases as the altitude increases. The 
mathematical model of air density can be expressed 
as: 

 
 
 
 
 

 where k1 = 1:2 x 10
4
m and k2 = 2:2 _ 10

4
m. 

Here r is the altitude of the position, where we want to 

calculate the air density. 
Perturbations Model 

 This method is straightforward step by step 
integration of the two-body equation of motion with the 
perturbations. In addition to Eq.(4) the equation of 
motion can be taken as Al-Bermani et al. (2012) 

 
  
 
 

 where ap is the sum of all perturbing 
acceleration to be included in the integration. The 
perturbing forces may be atmospheric drag force, 
radiation pressure, magnetic force, acceleration due 
to the Sun and the Moon etc. To numerically integrate 
this second order non-linear differential equation, we 
break Eq. (10) as follows: 

 
and  

 
 
  

 Now these are pair of two first order 
differential equations. So the integration technique will 
be more easy. 
Methodology to Solve the Problem 

 In general to solve a equations of motion of 
any dynamical model, there are so many different 
ways. The methods may be analytical, may be 
numerical, may be hypothetical etc. Here we deal with 
the problem of two bodies and used the numerical 
Runge-Kutta method of integration.  

To solve numerically we have the Universal 
gravitational law, given by: 

 
 
 
  

 Now, let us take two bodies, one with mass 
M and the other with mass m. The equivalent one-
body problem can be reformed by defining the 
effective mass of the system as follows: 

 
 
 
 

 where the force on this mass is given by the 
force between the two bodies. Now we discuss the 
dynamics of the LEO (Lower Earth Orbit), which is 
moving around the Earth under the attraction force of 
the Earth. So, here we take M as the Mass of the 
Earth and m the mass of the satellite; and suppose 
that the mass of the satellite be negligible compare to 
the mass of the Earth (m << M). 

 The above Eq.(11) and Eq.(12) can be 
written in terms of the cartesian X and Y coordinate 
axes as follows: 

 
 
 
 
 
 
 
 
 
 

 with r =  𝑥2 + 𝑦2  . The air density model is 

given by the e. (9) 
 To develop the program we set the initial 
conditions as follows.  

 
 
Environments 

 To get the solution of the problem we have 
used the C-code programing which includes the 
technique of numerical Runge-Kutta method of 
integration. It is a step by step method to get 
numerical data. We collect the data in a particular _le 
and then we plot the data as shown in the figures. The 
list of data, which we have collected are as follows: 
1. Time step by ten seconds. 

2. d 

3. The radial distance covered by the satellite with 
corresponding time step. 

4. The velocity of the satellite at every position when 
we recorded the radial distance. 

The Graphical Results 

 After developing the code we check it in 
various conditions. Initially we consider the satellite is 
moving in a particular altitude from the Earth's 
surface. Then we show the affects of the atmospheric 
drag force on it, that how it affects the satellite, or 
what will may cause after a long time for the effect of 
the atmospheric drag forces.  
 Conventionally, we get a visible effects when 
we take the initial altitude of the satellite is about 200 
Km. For collecting the data we use a too small time of 
step size to calculate the R-K method. We have taken 
the step size of 10 seconds to get more iterated data. 
Once we get the data we draw the graph by scattering 
plot in the MATLAB. Which are shown in the Figures 
2, 3, and 4. 
 Effects of the atmospheric drag force on the 
satellite at altitude 200 Km is presented in figure 2 
which shows that the altitude decreases with the time. 
It is also noticeable that initially it is decreasing with a 
slow rate, but as the time spends its rate of 
decreasing altitude increases. When the satellite is at 
nearly 135 Km, the altitude drops downward 
suddenly. As it is coming nearer to the Earth it is 
falling like a rock.  
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 The effect of atmospheric drag on a LEO is 
also very important in case of discussing about the 
satellite's velocity. When the satellite comes into the 
interior atmosphere, due to the drag force the velocity 
decreases. It is seen in figure 3 that before falling 
down the velocity it increases for some time compare 
to the initial velocity.  Again after falling down when it 
comes to very near to the atmosphere then the 
velocity is again effected as air density increases. The 
rate of changing velocity is also noticeable, which is 
clearly shown by the tail of the graph. It is also seen 
that when does the satellite crash into the Earth's 
surface. Figure 4 is presenting the radial distance Vs. 
velocity curve of the LEO satellite. It is visible that the 
velocity of the satellite is quite similar when it travels 
at the altitude level of 200 km to 100 km. But after that 
velocity goes down suddenly faster then previous one. 
This is due the high density of the Atmosphere at the 
Earth surface. It is seen that when the satellite 
crushes to the Earth surface then the satellite velocity 
is nearly about 110m/s

2
. 

Conclusions 

 In this paper we have shown the behavior of 
the LEO under the atmospheric drag. We have seen 
that the satellites moving under that force is being 
hampered compare to the satellites moving without 

this force. It is shown that if any satellite is moving 
around the altitude of 145 km then its will loss its 
position on the space and will crash into the earth 
surface in few times. It is also noticeable that the 
satellite will crash into the Earth's surface with a 
velocity of 110m/s. The nature of the velocity during 
its life under the altitude of 200 km has also imposed 
on this paper, which shows that satellite will change 
its velocity with respect to the time and the altitude. 
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